William Bowen, Mellon Foundation president who led initial OCW funding, dies at 83

Photo of man standing at a Princeton University lectern, giving a speech.

Photo of William Bowen by Brian Wilson, Office of Communications, Princeton University.

MIT OpenCourseWare joins with our colleagues across higher education to mourn the passing of William Bowen. As president of the Mellon Foundation, he played a central role in the creation of OpenCourseWare.

More on the OCW story below. But first, those who didn’t know Bowen can get a glimpse of his life and reach in Brian Rosenberg’s eloquent rememberance in The Chronicle of Higher Education:

To Bill Bowen, the important things always mattered, regardless of his age or his title. He cared in 2016 as passionately about the entrenched inequities in higher education as he did when he assumed the presidency of Princeton, at age 38. He cared as much about issues of academic freedom and free speech as he did in 1973, when he defended the right of William Shockley, a physics professor who believed blacks were genetically inferior, to say things that Bowen himself found deeply offensive. He argued as forcefully for the importance of the arts and humanities in our culture as he did when he assumed the presidency of the Andrew W. Mellon Foundation, in 1988.

He never stopped caring, and he never stopped being the most thoughtful and articulate voice on these and a host of other issues central to our educational system and our civic life…

Outside the circles of academe, his name is not nearly as well known as those of innumerable politicians and business people. But whether they know his name or not, many people who have attended a college whose doors would have been closed to them previously, or who received financial aid that created a world of new possibilities, are better off because Bill Bowen cared about their lives.

How did Bill Bowen come into the OCW fold? In 2000, MIT President Charles Vest had just received the revolutionary recommendation that would lead to OpenCourseWare. An Institute committee of faculty, staff and alumni felt that MIT should respond to the rapid growth of the Internet by giving all of its basic teaching materials away on the web for free.

President Vest quickly saw the wisdom and the enormous potential of the proposal, and set out to make it real. One of the first big questions: how to fund it? His first stop was none other than Bill Bowen. Vest describes their initial meeting:

I had breakfast in New York with Bill Bowen, the distinguished former president of Princeton University and current president of the Andrew W. Mellon Foundation. Bill is that rare combination, a deep thinker and an effective leader.

Over eggs, I said, “Bill, I want to tell you how MIT is thinking about using the Internet for education. Then I’ll have three questions. Do you think it’s a good idea? If you think it is a good idea, do you think foundations might fund it? And, if so, might The Mellon Foundation be interested?”

Normally when one approaches a foundation for support, the answer, if not “No,” is a request to send a letter. Then one might be asked to do a draft proposal with an approximate budget. Finally, one might be asked for a full-blown proposal, to which the ultimate response seems most likely to be rejection. In this case, Bill looked at me and said, “Don’t take this idea anywhere else. Let’s go to work to figure out how to fund it.”

Vest tells an expanded version of this story, with more recollections of Bill Bowen, in the following video from a 2011 panel discussion (clip starts at 13:20).

Teaching Calculus, the Beautiful Language of Change

 

Move…accelerate…reach the peak…bottom out…transform…

So many ways to look at change, to talk about change. Change is inescapable. And change can be scary, especially when you don’t understand what’s happening. Yet change can also be an opportunity for growth, for progress, for new insights.

The same could be said of the millions of students who take calculus classes every year. As teachers know, it’s a rich opportunity for student growth and insight, and also scary as they’re getting started. More than a math subject, calculus is fundamentally the language of change. It’s a beautiful and powerful expression of this universal phenomenon, and a great way to tackle a wide range of real-world problems.

MIT’s John Bush, professor of applied mathematics (and a fabulous photographer of fluid phenomena), offers some great calculus teaching tips in the above video. We hope you can motivate students by demonstrating how to revel in the beauty of the language, and all the things it can do, before diving into the nitty-gritty grammar of deltas and epsilons. Professor Bush suggests:

  • Sharks hunt with calculus! They intuitively “follow the gradient” of scent, or the direction that gives the highest rate of increase, to take them toward their prey.
  • Introductory physics students will have learned Snell’s law as an equation about the angles of light paths through different media. But calculus can show that it’s fundamentally an optimization problem of light following the fastest route; just like how a smartphone GPS map calculates your fastest route home through tangled streets and busy traffic. (See this explanation of route-finding by mathematician and writer Steven Strogatz.)
  • Archimedes’ Principle is a great way to experience the concept and importance of volume, and also the way integrals work. (Again, see Steven Strogatz’s engaging explanation.)

As Professor Bush says, calculus “is a language that’s valuable in virtually all disciplines, from physics to biology, from finance to engineering.”  Motivate deeper student engagement by demonstrating how beautiful it can be to describe their ever-changing world with the poetics of mathematics.

Calculus on OCW

OCW has a wealth of inspiring calculus teaching materials, all free and licensed for you to re-use and remix in your classroom. You’ll find complete courses, online textbooks, videos, many sample problems with solutions, and more. Here are some highlights.

Complete Courses

These two courses, from the OCW Scholar series, provide the complete teaching materials comprising MIT’s undergraduate calculus requirement. They’re a great place to begin, and house some of OCW’s most popular calculus material.

These OCW sites include complete video lectures, selected problem solving videos by course teaching assistants, and problems and exams with solutions. You can start at the beginning and work through it all in sequence, or pick and choose your own topics of interest from the syllabus.

Online Textbooks

These open-licensed textbooks by respected authors are free to download and use in your classroom, and for your own learning and inspiration.

  • Calculus for Beginners and Artists, by Daniel Kleitman
    An overview of calculus in clear, easy to understand language designed for the non-mathematician.
  • Calculus, by Gilbert Strang
    In-depth treatment of single variable and multivariable calculus, with plenty of applications. Also has an online Instructor’s Manual and a student Study Guide.
  • Calculus with Applications, by Daniel Kleitman
    Detailed lecture notes (in the form of a textbook) that cover differential calculus in one and several dimensions.
  • Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving, by Sanjoy Mahajan
    From its MIT Press catalog description: “…an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.”

Videos

Use these videos to inspire your own approach to teaching. Students can watch them for in-depth and engaging explanations of key concepts, and to supplement their classroom instruction time.

  • Highlights of Calculus video series, by Gilbert Strang
    Five videos provide an overview of the key topics and ideas of calculus and how they apply to real-life situations and problems. There are summary slides and practice problems complete with an audio narration by Professor Strang. The resource also includes a series of 12 videos, with slides and practice problems, that dig more deeply into derivatives.
  • Single Variable Calculus lecture videos with PDF notes, by David Jerison
    This sequence of videos and accompanying notes (beginning with the first class session) covers differentiation, applications of differentiation, the definite integral and its applications, techniques of integration, and exploring the infinite.
  • Calculus Revisited: Single Variable Calculus, by Herb Gross
    A revered series of videos and related resources covering the materials normally found in a freshman-level introductory calculus course. The series was first released in 1970, and has achieved something of a cult following in its second life on OCW and YouTube.
  • Get problem solving tips in the recitation videos by course teaching assistants in 18.01SC Single Variable Calculus and 18.02SC Multivariable Calculus. Start with these videos at the end of the first 18.01SC session “Introduction to Derivatives“:
    • Definition of Derivative, by Joel Lewis
    • Graphing a Derivative Function, by Christine Breiner

Problem Solving and Assessment

Use questions and accompanying solutions from OCW’s worked examples, problem sets and exams directly with your students, or as a basis for your own instruction. Begin your exploration with these examples:

AP Calculus Exam Study

With OCW Highlights for High School, you can search for OCW calculus materials by topic and subtopic, to help students prepare for their AP Calculus exams.

**** **** ****

These material highlights are just a tiny fraction of all of the calculus content on OCW. In the words of Professor John Bush, with calculus “the possibilities are endless!”

A Student-Centered Ethic

Person writing on a chalkboard at the front of a classroom,

A teaching assistant in one of the ‘mega-recitation videos’ for 6.034 Artificial Intelligence.

By Joe Pickett, OCW Publication Director

Like it or not, the first two years of an undergraduate’s education at a research university often consists of large lectures taught by professors, supplemented by discussion groups or problem-solving sessions (sometimes called “recitations”) run by teaching assistants (TAs).  Consequently, for many undergraduates, a TA is the first college instructor they get to know on a personal level.

So teaching assistants can have a huge impact on the experience of undergraduates, especially in the early going, where a student’s attitude about learning can take off—or stall out. Luckily, most TAs take their jobs seriously and put a lot of effort into helping their students.

Fostering Real Intelligence and Well-Being

OCW has for the first time provided a glimpse into the thinking that TAs put into their teaching by publishing the TAs’ Instructor Insights for 6.034 Artificial Intelligence. The TAs, Jessica Noss and Dylan Holmes, explain how they adhere to a student-centered ethic initiatied by Professor Patrick Winston, where the primary objects is “to help students learn the material and to become inspired.” This ethic informs all the course policies and TA activities, from assignment due dates to grading.

For instance, since the point of assessment is to demonstrate mastery (and not to make fine distinctions in accrued points), the final exam is optional, and four of its five parts reflect knowledge already assessed in quizzes given earlier in the semester. So if a student does poorly on a quiz, there’s a chance for redemption in the final. This relieves the pressure to do well on a single test.

Assignments are due by 10PM rather than the traditional zero hour of midnight to encourage students to get a decent night’s sleep.

Taking It Online

The TAs engage directly with students both in class and out. On an online forum, the TAs answer student questions, and these exchanges are visible for the entire class to see. Over time, the forum functions as an archive of Frequently Asked Questions and helps inform how recitations are taught.  But running an online forum can be tricky, and the TAs share how they have responded to the challenges to make the exchanges more productive.

Facing the Challenges

It’s not easy being a TA. You’re just starting out, just beginning to learn how to engage students and foster learning. You have to learn how to plan and manage a successful recitation, for example. Students can ask all kinds of questions that you might not know the answer to. And you have to do this while dealing with the pressures of being a student yourself.

For Noss and Holmes, the point is to show the students that the TAs care about them and about how well they do—that is, how well they learn. That’s an ethic that’s easy to get behind.

** ** **

[This is the 2nd of two recent posts on 6.034 Artifical Intelligence. The first post highlights some instructor insights from Professor Patrick Henry Winston.]

Innovating Dirt Cheap: What Sadoway Can Teach Us About The Future Of Clean Energy (Huffington Post)

Screenshot of video with tuxedo-clad professor at the front of lecture hall, holding up a glass of champagne.

Professor Donald Sadoway toasts the students at end of his class 3.091 Introduction to Solid State Chemistry.

Professor Donald Sadoway is the charismatic and insightful instructor of one of OCW’s most popular courses, 3.091SC Introduction to Solid State Chemistry. With legions of fans around the world, his video lectures reveal frequent pearls of general wisdom among the clear explanations of chemistry fundamentals and applications.

Sadoway’s research on grid-scale energy storage also has legions of fans. Louika Papadopoulos recently wrote on five favorite Sadoway quotes springing from his clean energy work.

When it comes to alternate power sources and batteries, Donald R. Sadoway, John F. Elliott Professor of Materials Chemistry at the Massachusetts Institute of Technology (MIT) is the man to turn to. Voted one of Time magazine’s 100 most influential people in the world in 2012, Sadoway is not only known for his packed classes, despite being one of the largest in the history of the institute, but for the pieces of wisdom he imparts when simply speaking about batteries. Here are a few of my favorite Sadoway quotes and what I believe they can teach us about the future of clean energy.

My personal favorites are these two:

2. “The liquid metal battery story is more than an account of inventing technology. It’s a blueprint for inventing inventors.”
This is an often overlooked and yet ubiquitous truth. Whenever dealing with innovation it is important to remember it’s not just about the technology, it is about nurturing a culture of innovation. It’s about investing in people who can maximize any technology’s potential, adapt it efficiently to current circumstances and ensure its appropriate future development. It’s about creating inventors of technology who can use what they have learned to tackle new problems and develop new technologies. The bottom line is: more energy inventors moulded, more energy inventions made…

4. “If you want to make something dirt cheap, make it out of dirt. Preferably dirt that’s locally sourced.”
If we want innovation in energy to truly benefit humanity we have to make sure it is available to all. What better way to do that than to make it cheap and locally sourced? This quote is also the inspiration for the title of this piece as it also represents a key element of Sadoway’s work. Instead of trying to invent a product and then struggle to make it economically viable, Sadoway opted instead to develop a battery that would meet the pricing point of the electricity market upon creation. This is the reason why he looked only at earth-abundant materials that would work well with cheap manufacturing techniques. Dirt-cheap innovation indeed!

Read the complete story.

Seeking simple solutions with huge impacts (MIT News)

Photo of Cauam Cardoso standing with a group of young Indian women.

MIT PhD student Cauam Cardoso led focus group discussions in low-income communities in Delhi and other cities in India. Women described how they use technology, who makes decisions on what to purchase for their work or home, and how they regard technology’s impact on their lives and self-reliance. At a session this winter in Delhi, pictured here, Cardoso met with young women who were taking a class to improve their skills at sewing. (Photo: Tom Gearty)

Cauam Cardoso was only 17 when he decided to break from family tradition and pursue engineering instead of the arts, a move that set him on a path to working with communities in need.

Over the past decade, Cardoso, a PhD student in international economic development at MIT, has helped communities on five continents overcome infrastructure issues such as a lack of sanitation, while always following the advice his dad gave him growing up: “You have two ears and one mouth for a reason, so listen more than you talk.”

Since coming to MIT, Cardoso has mainly been involved in a project called Comprehensive Initiative on Technology Evaluation, or CITE. OCW recently published a CITE Reports supplemental resource, featuring studies of solar lanterns in Uganda and water filters in India.

“The idea is one simple technology can have this huge impact on someone’s well-being,” explains Cardoso. “But today there are a lot of technologies out there such as solar lanterns or water filters, and there’s no way to systematically evaluate what works and what doesn’t work on the ground.”

With CITE, Cardoso and the project’s other team members are working to develop an objective methodology to assess the usefulness of various technologies. To assess a product, CITE focuses on three main categories: suitability (does the technology work properly?), scalability (can the technology actually reach the consumers?), and sustainability (will the technology create a long-lasting impact, and will the business model supporting it survive long-term?). For the past five years, Cardoso and the rest of the CITE team have been organizing pilot studies all over the world, from solar lanterns in Uganda to water filters in India, and now they are in the process of compiling their results and developing the best methodology.

Cardoso has also shared his global experience and perspective with MIT undergraduates, through his course 11.005 Introduction to International Development (also recently published in OCW). As MIT News reports:

Cardoso redesigned the course syllabus to reflect his background, and draws heavily on his own experiences in the field to engage his students. “Leading my own course and directing the students was probably one of the most rewarding experiences I had at MIT,” says Cardoso, who received his department’s 2016 Outstanding PhD Teaching Assistant award. “I love teaching, and I take it very seriously. You learn so much from the students — it’s really a gift.”

Read the complete MIT News profile of Cauam Cardoso.

New season of “Science Out Loud” sparks curiosity

Photo of woman in a lab coat being video'd, surrounded by lighting and camera equipment, with two production people assisting.

Left to right: Elizabeth Choe ’13, executive producer; George Zaidan ’08, director; and Whitney Hess PhD ’16 film “Choose-Your-Own-Chemistry-Adventure” for “Science Out Loud” from MIT+K12 Videos.

By MIT Office of Digital Learning

No equations allowed. This basic rule drives the thinking behind “Science Out Loud,” an original web series hosted and co-written by MIT students. The fun, engaging videos are geared towards middle and high school students and designed to bring scientific concepts to life through research, experiments, and demos performed by real scientists and engineers. No chalkboards. No textbooks. Lots of learning.

The new season of Science Out Loud – now live on YouTube – pushes the boundaries of video production to turn academic education into curiosity-sparking interactive experiences.

There’s a choose-your-own chemistry adventure where viewers can click through the video to change the ingredients of a chemical reaction (yeast, soap, and hydrogen peroxide) and create the best foam explosion.

Another video explores how virtual reality works, which viewers can watch in 360 degrees on YouTube and Google Cardboard. Yet another showcases MIT’s Scratch programming to make a video game, with the option to watch in English or Italian.

Science Out Loud is part of MIT+K12 Videos, an educational outreach program from the Office of Digital Learning that seeks to encourage a lifelong love of learning through original digital media and live programming. The program aims to promote STEM (science, technology, engineering, and math) literacy while opening the world of MIT to as many people as possible.

“The foundation of MIT+K12 is not video, camera work, or editing,” explains program director Elizabeth Choe. “It’s about what the videos enable. We want to leverage the amazing community of students and people at MIT to challenge people’s notions of what scientists and science look like while sparking curiosity and agency among young people.”

Originally launched by the School of Engineering in 2011, MIT+K12 Videos has produced more than 150 videos that have garnered close to 10 million views on YouTube. The program fits within MIT’s larger pK-12 vision to bring the university’s immersive, hands-on approach beyond the campus and deliver STEM education to pre-kindergarten through grade-12 learners and educators.

For MIT students participating, the program is about developing the skills not just to make a video but to clearly communicate their research and share their passion with a non-STEM audience. All to complement what they’re learning in the classroom.

“K12 Videos gave me such a variety of practical experience,” says K12 Videos Educational Media Fellow and recent graduate Ceri Riley ’16. “Every project was different so I got to try out new skills — from producing and editing to animating and filming. It really acted as a springboard for me.” Post-graduation, Riley is already working for SciShow, an extremely popular science channel on YouTube.

“I’m proud of putting myself out there. It challenged me to step outside of my comfort zone, to try new things, and to appreciate the process as much as (or more than) the final product,” says Whitney Hess PhD ’16 and “star” of the choose-your-own chemistry adventure video.

MIT students can get involved with MIT+K12 Videos in a variety of ways, from hands-on hosting and writing to behind-the-scenes education outreach or content consultants to becoming an Educational Media Fellow. For Science Out Loud, students can either directly pitch a video idea or enroll in 20.219 (Becoming the Next Bill Nye) to earn course credit. Volunteers from freshmen to graduate students are always welcome. MIT faculty can also play a role — hosting the #askMIT Q&A series, supporting student-run videos, or collaborating on new projects.

Curiosity sparked? Watch the new season of Science Out Loud or email mitk12videos@mit.edu to get involved. You can also explore materials from previous seasons on PBS Learning Media (including teacher supplementary resources), Khan Academy, iTunes U, and Curiosity.com. All videos are freely available and downloadable under a Creative Commons license.

Courses from MIT’s 2016 Teaching with Digital Technology Awards Recipients

By Sarah Hansen, OCW Educator Project Manager

2016 marked the inaugural year of MIT’s Teaching with Digital Technology Awards. These awards, co-sponsored by the Office of Digital Learning, the Office of the Dean for Undergraduate Education, and the Office of the Dean for Graduate Education, are student-nominated awards for faculty and instructors who have effectively used digital technology to improve teaching and learning at MIT. The awards recognize the faculty for their teaching innovations and give the MIT community the opportunity to learn from their practices.

This year’s (first ever!) awardees are Lorna Gibson (materials science and engineering), Max Goldman & Robert Miller (electrical engineering and computer science), Chris Terman (electrical engineering and computer science), Peter Dourmashkin (physics), and Kurt Fendt (comparative media studies/writing).

OCW is honored to share courses and instructional insights from several of this year’s recipients.

Lorna Gibson

Rob Miller

Chris Terman

Peter Dourmashkin

Kurt Fendt