Featured Collection: Environment Courses

Photo of several people on a hilltop looking over a city, with the ocean in the distance.Like so many of the big challenges taken on at MIT, environmental issues demand an interdisciplinary perspective.

From declining fisheries to acute urban pollution to record-breaking global temperatures, the evidence of human impact on the environment continues to mount. And at the same time, the environment shapes us, as human society and institutions are built upon our connection to the weather, land, water, and other species. What can we learn from ecological systems and cycles? What are the right solutions to our urgent environmental challenges?

MIT scholars, students and alumni are working to understand and help us make progress toward a more sustainable and just world. This core mission draws upon all of the fields represented at MIT: not just science, engineering, and technology, but also the humanities, arts, economics, history, architecture, urban planning, management, policy, and more. Use OCW materials from across these fields to expand your horizons and learn more about our evolving relationship with the environment.

OCW’s Environment Courses list is inspired by two interdisciplinary MIT programs. Many of the list’s undergraduate courses fall within the undergraduate Environment and Sustainability Minor devised by MIT’s Environmental Solutions Initiative (ESI), and the OCW course list employs the undergraduate minor’s four topic pillars. Many of the list’s graduate-level courses are part of the MIT Sloan School of Management Sustainability Certificate curriculum.

Begin your exploration with these highlights from OCW’s collection of over 160 Environment courses.

Earth Systems and Climate Science

12.009J Theoretical Environmental Analysis
This course analyzes cooperative processes that shape the natural environment, now and in the geologic past. It emphasizes the development of theoretical models that relate the physical and biological worlds, the comparison of theory to observational data, and associated mathematical methods.

12.340 Global Warming Science
This course provides students with a scientific foundation of anthropogenic climate change and an introduction to climate models. It focuses on fundamental physical processes that shape climate (e.g. solar variability, orbital mechanics, greenhouse gases, atmospheric and oceanic circulation, and volcanic and soil aerosols) and on evidence for past and present climate change. The course considers material consequences of climate change, including sea level change, variations in precipitation, vegetation, storminess, and the incidence of disease, and also examines the science behind mitigation and adaptation proposals.

Engineering for Sustainability

EC.716 D-Lab: Waste
This introductory course takes a multidisciplinary approach to managing waste in low- and middle-income countries, with strategies that diminish greenhouse gas emissions and provide enterprise opportunities for marginalized populations. Topics are presented in real contexts through case studies, field visits, civic engagement and research, and include consumer culture, waste streams, waste management, entrepreneurship and innovation on waste, technology evaluation, downcycling / upcycling, Life Cycle Analysis and waste assessment.

2.627 Fundamentals of Photovoltaics
Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment.

Environmental Governance

11.601 Introduction to Environmental Policy and Planning
This course focuses on national environmental and energy policy-making; environmental ethics; the techniques of environmental analysis; and strategies for collaborative environmental decision-making. The primary objective is to help students formulate a personal theory of environmental planning practice. The course is taught comparatively, with constant references to examples from around the world. It is required of all graduate students pursuing an environmental policy and planning specialization in the Department of Urban Studies and Planning.

STS.032 Energy, Environment, and Society: Global Politics, Technologies, and Ecologies of the Water-Energy-Food Crises
With increasing public awareness of the multiple effects of global environmental change, the terms water, energy, and food crisis have become widely used in scientific and political debates on sustainable development and environmental policy. Although each of these crises has distinct drivers and consequences, providing sustainable supplies of water, energy, and food are deeply interrelated challenges and require a profound understanding of the political, socioeconomic, and cultural factors that have historically shaped these interrelations at a local and global scale.

Environmental Histories and Cultures

CMS.631 Data Storytelling Studio: Climate Change
This course explores visualization methodologies to conceive and represent systems and data, e.g., financial, media, economic, political, etc., with a particular focus on climate change data in this version of the course. Topics include basic methods for research, cleaning, and analysis of datasets, and creative methods of data presentation and storytelling. The course considers the emotional, aesthetic, ethical, and practical effects of different presentation methods as well as how to develop metrics for assessing impact.

21W.775 Writing about Nature and Environmental Issues
In this course, students read and write about works that explore symbolic encounters in the American landscape. Some of the assigned works look at uneasy encounters between ordinary individuals and animals—wolves, eagles, sandhill cranes—that Americans have invested with symbolic significance; others explore conflicts between the pragmatic American impulse to impose order on unruly nature and the equally American inclination to enshrine the unaltered landscape.

OCW’s Greatest Hits: Architecture and Urban Studies and Planning

It’s time for a new post in our Greatest Hits series, highlighting individual MIT departments through a handpicked selection from their most-visited OCW courses. This month we feature the departments of Architecture and Urban Studies and Planning.

Photo of interlocking wooden forms.

This model from a student’s final project in 4.111 Introduction to Architecture & Environmental Design demonstrates the relationship between object and void. (Courtesy of Johanna Greenspan-Johnston. Used with permission.)

Architecture

  • 4.111 Introduction to Architecture & Environmental Design, taught by Lorena Bello Gomez
    This course provides a foundation to the design of the environment from the scale of the object, to the building to the larger territory. The design disciplines of architecture as well as urbanism and landscape are examined in context of the larger influence of the arts and sciences.
  • 4.125 Architecture Studio: Building in Landscapes, taught by Professor Jan Wampler
    This undergraduate design studio “introduces skills needed to build within a landscape establishing continuities between the built and natural world. Students learn to build appropriately through analysis of landscape and climate for a chosen site, and to conceptualize design decisions through drawings and models.”
  • 4.241J Theory of City Form, taught by Professor Julian Beinart
    This course covers theories about the form that settlements should take and attempts a distinction between descriptive and normative theory by examining examples of various theories of city form over time. Case studies will highlight the origins of the modern city and theories about its emerging form, including the transformation of the nineteenth-century city and its organization.
  • 4.341 Introduction to Photography and Related Media, taught by Andrea Frank et al
    This course provides practical instruction in the fundamentals of analog and digital SLR and medium/large format camera operation, film exposure and development, black and white darkroom techniques, digital imaging, and studio lighting.”
  • 4.401 Introduction to Building Technology, taught by Professor Marilyne Andersen
    This course provides a fundamental understanding of the physics related to buildings and an overview of the various issues that have to be adequately combined to offer the occupants a physical, functional and psychological well-being. Students are guided through the different components, constraints and systems of a work of architecture. These are examined both independently and in the manner in which they interact and affect one another.

Photo of feet along a brick-paved path.

The Post Office Square in Boston served as the site of a student’s project in 11.309J Sensing Place: Photography as Inquiry. (Image courtesy of Francisca Rojas. Used with permission.)

Urban Studies and Planning

  • 11.001J Introduction to Urban Design and Development, taught by Professor Susan Silberberg
    This course examines the evolving structure of cities and the way that cities, suburbs, and metropolitan areas can be designed and developed. Boston and other American cities are studied to see how physical, social, political and economic forces interact to shape and reshape cities over time.
  • 11.011 The Art and Science of Negotiation, taught by David Laws
    This course provides an introduction to bargaining and negotiation in public, business, and legal settings. It combines a “hands-on” skill-building orientation with a look at pertinent social theory. Strategy, communications, ethics, and institutional influences are examined as they influence the ability of actors to analyze problems, negotiate agreements, and resolve disputes in social, organizational, and political circumstances characterized by interdependent interests.
  • 11.126J Economics of Education, taught by Professor Frank Levy
    This class discusses the economic aspects of current issues in education, using both economic theory and econometric and institutional readings. Topics include discussion of basic human capital theory, the growing impact of education on earnings and earnings inequality, statistical issues in determining the true rate of return to education, the labor market for teachers, implications of the impact of computers on the demand for worker skills, the effectiveness of mid-career training for adult workers, the roles of school choice, charter schools, state standards and educational technology in improving K-12 education, and the issue of college financial aid.
  • 11.309J Sensing Place: Photography as Inquiry, taught by Professor Anne Whiston Spirn
    This course explores photography as a disciplined way of seeing or investigating urban landscapes, and expressing ideas. Readings, observations, and photographs form the basis of discussions on light, detail, place, poetics, narrative, and how photography can inform design and planning.
  • 11.431J Real Estate Finance and Investment, taught by Professors David Geltner and Tod McGrath
    This course is an introduction to the most fundamental concepts, principles, analytical methods and tools useful for making investment and finance decisions regarding commercial real estate assets. As the first of a two-course sequence, this course will focus on the basic building blocks and the “micro” level, which pertains to individual properties and deals.

Investigating Earth’s Earliest Life (MIT News)

Photo of a woman in lab holding up and looking into a small specimen jar.

MIT graduate student Kelsey Moore uses genetic and fossil evidence to study the first stages of evolution on our planet. (Photo: Ian MacLellan)

A brilliant hands-on activity by her second grade teacher got Kelsey Moore, now an MIT graduate student, wondering about the earliest life on Earth.  Students and teachers alike can find inspiration in her story on MIT News — and of course, OCW’s got relevant courses too.

In the second grade, Kelsey Moore became acquainted with geologic time. Her teachers instructed the class to unroll a giant strip of felt down a long hallway in the school. Most of the felt was solid black, but at the very end, the students caught a glimpse of red.

That tiny red strip represented the time on Earth in which humans have lived, the teachers said. The lesson sparked Moore’s curiosity. What happened on Earth before there were humans? How could she find out?

A little over a decade later, Moore enrolled in her first geoscience class at Smith College and discovered she now had the tools to begin to answer those very questions.

Moore zeroed in on geobiology, the study of how the physical Earth and biosphere interact. During the first semester of her sophomore year of college, she took a class that she says “totally blew my mind.”

“I knew I wanted to learn about Earth history. But then I took this invertebrate paleontology class and realized how much we can learn about life and how life has evolved,” Moore says. A few lectures into the semester, she mustered the courage to ask her professor, Sara Pruss in Smith’s Department of Geosciences, for a research position in the lab.

Now a fourth-year graduate student at MIT, Moore works in the geobiology lab of Associate Professor Tanja Bosak in MIT’s Department of Earth, Atmospheric, and Planetary Sciences…

Keep reading >

Start your own exploration of life’s origins on Earth, with the free lecture notes and more in OCW’s 12.007 Geobiology, co-taught by Professors Tanja Bosak and Roger Summons.

Venturing outside the norm to engage learners

Lecture slide with two composite images. The first image is of Alloy FE-12Cr-2Si, with grains and grain boundaries demarcated. The second image is of the cut surface of cheddar cheese.

Lecture slide from Nuclear Science Professor Michael Short’s cheese-tasting class.

By Sarah Hansen, OCW Educator Project Manager

Why did you become a teacher? For most people, the opportunity to catalyze students’ curiosity about the world into understanding was a major factor in deciding to pursue education as a profession. When you entered the classroom for your first year of teaching, you probably discovered quickly that before students could learn anything, they first had to focus their attention on what you were teaching. This was easier said than done! Cultivating and sustaining students’ attention to the myriad nuances of the curricular content and experiences you were developing most likely consumed most of your energy that first year in the classroom. I, for one, remember remaining at school—long after cars had cleared the parking lot—to construct a life-sized tree out of paper and masking tape. It was a novice educator’s attempt to pull students into a series of complex literacy experiences. It worked, but boy, was it exhausting.

The challenge of helping students attend to what you are teaching is as important today as it was on your first day in the classroom. Probably more so, given just how “plugged in” students are to what’s going on outside of the classroom while they are inside of the classroom. “Today’s instructors,” observes Lincoln Laboratory Fellow Dr. Jeremy Kepner, “compete with laptops, cell phones, and social media for students’ attention. Lectures have to be engaging.”

But as you learned early on, the desire to engage students in the learning process is not enough. You need strategies. MIT faculty members and instructors understand this, too. Through the Instructor Insights sections of their OCW course publications, many have shared specific (and often outside of the norm) approaches they have used for engaging learners in their residential courses. I’ve included a sampling of highlights below. You won’t find “Constructing Paper Trees” on the list (yet!), but you will find concrete strategies for using analogies, non-traditional examples, humor, and music for helping students engage with curricular content. As you gear up for the academic year, I hope you find a strategy that inspires you!

Analogies

Nuclear Systems Design Project

Thumbnail image of logo designed for class project.This capstone course is a group design project involving integration of nuclear physics, particle transport, control, heat transfer, safety, instrumentation, materials, environmental impact, and economic optimization. Professor Michael Short includes a class session in which various cheeses demonstrate the properties of metals under the high temperature and stress of a reactor. “To teach them about the granular structures of metals,” describes Short in his Instructor Insights on making content tangible, “we talked a little about cheddar cheese, because if you break real cheddar cheese apart, it actually fractures on the curd, so curds in cheese are like grains in metal, and there are grain boundaries or curd boundaries. That helped the students understand key ideas. What are grains? How can they fail? Do they always break through the grains, or do they break around the grains?” Yum. What student wouldn’t want to attend to the properties of metals when they come served on a cheese platter? I’m guessing if you add crackers to that “unconventional pairing,” you’ll have everyone’s attention.

Non-Traditional Examples

Slavery and Human Trafficking in the 21st Century

A woman doing agricultural work.This course explores the issue of human trafficking for forced labor and sexual slavery, focusing on its representation in recent scholarly accounts and advocacy as well as in other media. In her Instructor Insights, Mitali Thakor notes that she uses non-traditional examples to broaden students’ understanding of human trafficking, including exploitation in the food processing, modeling, and sports industries. “When we say the word trafficking,” notes Thakor, “a lot of different images come to mind, but usually beef production and migrant workers are not among them.” Using examples that challenge students’ conceptions of how the world works can help engage them in exploring phenomena they previously thought they understood.

Humor

Principles of Chemical Science

Graphic depiction of equations and bondsThis course provides an introduction to the chemistry of biological, inorganic, and organic molecules. Professor Catherine Drennan purposefully uses humor to engage students in lectures. “MIT is a relatively serious place,” she says in her Instructor Insights video on this topic. “But the MIT students are really fun people. They’re willing to make fun of themselves and be a little geeky.” She incorporates elements such as videos about dogs teaching chemistry, references to comics, funny chemistry t-shirts—and even acts out buffering, all in the service of capturing students’ attention. According to Drennan, “it really helps people remember when you do something a little bit different.” Agreed.

Music

Artificial Intelligence

Artist's rendering of man going from agricultural work to computer work.This course introduces students to the basic knowledge, representation, problem solving, and learning methods of artificial intelligence. Professor Patrick Henry Winston uses music to fuel anticipation for learning experiences: “I like to play rock and roll music in the room as students are entering the lecture hall. I usually select something from the Rolling Stones, because it’s the kind of music that gives me an edge and energizes the audience. When the music stops, everybody knows the performance is about to begin.” In his Instructor Insights section on experiencing the large lecture as theater, he comments that he connects the music to curricular content. “For example,” he says, “we have a topic in artificial intelligence called constraint satisfaction problems. What else could you play, but the Stones’ (I Can’t Get No) Satisfaction?” So true. Take a cue from this professor: To engage students, leverage your playlists!

 

 

 

 

 

 

 

Featured Collection: Energy Courses

Photo looking upward at wind turbine, with Sun in the background.

Photo courtesy of Changhua Coast Conservation Action on Flickr.

Prosperity for a growing global population takes energy…lots of it. Indeed, scholars have linked the progress of modern civilization to a 10,000 year sequence of energy innovations.

But now with mounting risks from human-caused climate change and other environmental degradations, the world faces an urgent need to transform its energy systems. And this rapid shift must happen while giving billions more people around the world fair access to their share of energy-based prosperity.

Seeking to understand and transform the world’s energy systems, MIT researchers and students investigate all aspects of energy. They discover new ways of generating and storing energy, as in creating biofuels from plant waste and in holding electricity from renewable sources in cost-effective, high-capacity batteries. They create models and design experiments to determine how we can improve energy efficiency at all scales, from nanostructures and photovoltaic cells to large power plants and smart electrical grids. They analyze how people make decisions about energy, whether as individual consumers or whole nations, and they forecast what the social and environmental consequences of these decisions might be.

OCW’s Energy Courses list demonstrates how the study of energy is so important and so pervasive at MIT. It’s built on the MIT Energy Initiative’s undergraduate Energy Studies Minor, with a core of foundational subjects in energy science, technology, and social science, complemented by a program of electives which allow students to tailor their Energy Minor to particular interests. The OCW course list also includes some related courses which are not officially part of the Energy Minor program.

Explore the range and depth of OCW’s energy courses beginning with these four highlights.

Energy Decisions, Markets, and Policies
This Energy Minor core subject, featuring a complete set of lecture videos, examines the choices and constraints regarding sources and uses of energy by households, firms, and governments.

 

D-Lab: Energy
This Energy Minor elective provides project-based learning about sustainable energy technology in developing countries, where compact, robust, low-cost solutions are required. The OCW version features many videos and student project presentations.

Nuclear Systems Design Project
This Energy Minor elective is a capstone project synthesis of practical problems of current interest in nuclear applications design.  This version’s students designed a nuclear power plant to provide emission-free electricity along with carbon sequestration.

Climate Action Hands-On: Harnessing Science with Communities to Cut Carbon
This non-credit seminar co-sponsored by MIT ClimateX features citizen science responses to the problem of leaking natural gas infrastructure, and helped develop a new leak measurement method now being trialed by MA utilities.

What are you searching for?

We’re excited to launch our upgraded Search tool for the OCW website. As always, the search bar is in the upper right corner of the top menu. But there are many improvements under the hood.

For instance, start typing and you’ll now see “autocomplete” suggestions. If you like one of them, click it to go straight to the result.

Screenshot of OCW homepage, with "game" typed into search bar, and several autocomplete suggestions dropped down below.

Here’s the first few results for “games for learning.” Note that the results default to show entire courses that match the search string. You can also broaden the search to include all types of files plus entire courses, or filter results to just PDFs, or just assessment content (assignments + exams + projects).

Screenshot of search results for "games for learning," set to display courses.

If you’re an educator, use this search to find courses and teaching materials on a particular topic, and then click the Instructor Insights tab to learn more about how MIT instructors teach on this topic.

Screenshot of search results for "games for learning," set to display instructor insights.

The more you use it, the better it will get! We hope you’ll give the new site Search tool a try, and please do let us know how it’s working for you.

MIT OpenCourseWare videos on YouTube have been restored

MIT OpenCourseWare’s videos on YouTube, which had been blocked around the world since last Thursday evening, are once again viewable.

Just before midnight (EDT) on Thursday June 14, over 5,000 OCW videos on YouTube — including classroom lectures, MIT faculty interviews, and student project presentations — were suddenly blocked to viewers all around the world. Visitors to the OCW channel on the YouTube website, or on the YouTube app, saw an error message: “This video contains content from MIT. It is not available in your country.

While this error message implied that the blockage was somehow dependent on the viewer’s country, we believe the blockage was worldwide.

Visitors to the OCW website, where these videos are embedded within course webpages, got a similar error message that videos could not be played.

OCW immediately requested help from YouTube Support to fix the issue.

On Monday June 18, the YouTube team informed OCW that the videos would be restored upon approving a new “Subscription Offerings Amendment” to our YouTube Partner Agreement. After discussions between MIT and YouTube legal teams, an approved agreement is now in place.

We are glad that YouTube has restored access to OCW’s videos. YouTube has long been a valued partner to OCW in freely sharing our open course materials around the world. We look forward to working with YouTube to ensure that our content remains available to all, without barriers.

NOTE: This post was updated on June 25, 2018, to reflect the approved agreement between MIT and YouTube.